На основі теоретичного узагальнення практичного досвіду металургійного виробництва запропоновані напрямки рішення проблеми підвищення конкурентоспроможності металопродукції України за рахунок створення матеріало – енергоекономних технологій очищення переробного конвертерного чавуну від сірки і фосфору з побіжною деазотацією.
2. У результаті термодинамічних і експериментальних досліджень механізму процесу десульфурації чавуну інжектуванням магнію через фурму занурення встановлено, що процес десульфурації здійснюється, здебільшого, за рахунок розчинення магнію в чавуні і подальшої взаємодії між розчиненими в чавуні сіркою і магнієм. Запропоновано фізико-хімічну схему процесу десульфурації чавуну інжектуванням диспергованого магнію в розплав через фурму занурення, яка включає: розчинення магнію в первинній реакційній зоні; перенесення висхідними макропотоками насичених магнієм об’ємів чавуну і газових бульбашок до поверхні розплавленого чавуну; побіжна взаємодія розчиненого в чавуні магнію із сіркою чавуну у вторинній реакційній зоні; перехід продуктів взаємодії сірки і магнію в шлак і часткове винесення у газову фазу. 3. Введення в магнієвий реагент для десульфурації чавуну алюмінію підвищує температуру випарювання магнію, знижує інтенсивність випарювання магнію і підвищує розчинність магнію в чавуні. Установлено, що оптимальним, з погляду ефективності процесу десульфурації, є використання магній–алюмінієвого сплаву, який містить 10 % алюмінію. Уперше встановлено, що використання гранульованого магніє– алюмінієвого сплаву МА9Ц6 при десульфурації чавуну дозволило підвищити показники процесу десульфурації (ступінь використання магнію на сірку, показник b) ~ на 10 %. Крім того, використання вторинного гранульованого магнію при десульфурації чавуну дозволяє одержати побіжну деазотацію чавуну (у кількості 20 – 25 % навіть при використанні повітря, як транспортуючого газу). 4. З урахуванням результатів аналізу термодинамічних і кінетичних умов протікання процесів комплексного рафінування чавуну (десиліконізація, десульфурація, дефосфорація) шлакоутворюючими сумішами різного складу (CaО–містячі і Na2O–містячі), а також вимог матеріало–енергоекономної технології рафінування вибраний тип шлаку, що рафінує - Na2O–містячий, що базується на використанні промислових відходів хімічного виробництва - сплаву сульфату і карбонату натрію (плаву соди). 5. Виконано термодинамічний аналіз процесу випару карбонату натрію й основних окисних систем типу Na2O-SiО2 і Na2O-P2O5. Розрахунковим шляхом визначені склади газової фази. Для системи Na2O-SiО2 відзначена задовільна збіжність отриманих розрахункових даних з експериментальними даними. 6. Виконаний термодинамічний аналіз реакцій, які протікають при взаємодії компонентів залізовуглецевого розплаву із содомістячими шлаками. Показано, що процес взаємодії вуглецю з карбонатом натрію супроводжується випарюванням натрію. При використанні сульфату натрію відбувається перехід сульфату в сульфід. У загальному вигляді представлені реакції окислення фосфору і кремнію чавуну карбонатом і сульфатом натрію, що пояснюють механізм процесу рафінування чавуну плавом соди. 7. Виявлений єдиний реагент (плав соди), що має одночасно окислюючу, знесірчуючу і знефосфорюючу здатність. Експериментально вивчені особливості процесів рафінування чавуну шлакоутворюючими содомістячими сумішами, установлена перевага в окисному рафінуванні плаву соди у порівнянні із содою. При проведенні промислових досліджень уперше доведена можливість двостадійного глибокого рафінування чавуну від кремнію, сірки і фосфору содомістячими відходами з одержанням чавуну, що містить менше 0,02 % фосфору і тисячні частки відсотка сірки. 8. При дослідженні поведінки азоту в чавуні в процесі виплавлення, випуску в ківш установлені: залежність вмісту азоту в чавуні (у межах 0,007 – 0,015 %) від хімічного складу чавуну і шлаку, а також незначне (на 0,001 – 0,002%) зниження його вмісту в чавуні в процесі випуску чавуну в ківш. 9. Уперше встановлено, що рівноважний вміст азоту в чавуні на всьому протязі технологічного циклу (від випуску з доменної печі до зливання в міксер) залишається нижчим фактичного на 0,002–0,004 %. 10. Уперше встановлено, що при десульфурації чавуну шлакоутворюючою сумішшю (Сао + Al), що вдувається в чавун у струмені кисню, побіжна деазотація не залежить від вмісту сірки в чавуні і протікає з початку обробки, у той час як при десульфурації чавуну магнієм процес побіжної деазотації одержує інтенсивний розвиток при істотному підвищенні вмісту магнію в чавуні. 11. Вперше промисловими експериментами підтверджено, що при десульфурації чавуну содосульфатними сумішами має місце побіжна деазотація чавуну на рівні 40 – 50 % (з 0,008 – 0,009 % до 0,004 – 0,005 %). 12. Розроблені ресурсо– енергозберігаючі технології десульфурації, дефосфорації і десиліконізації чавуну (усі з побіжної деазотацією) дозволяють у кожному конкретному випадку забезпечити киснево-конвертерний процес чавуном з оптимальним вмістом сірки, фосфору і азоту. Особливостями запропонованих технологій є використання промислових відходів, як реагенту, а також максимальна компенсація теплових втрат у процесі обробки чавуну. ОСНОВНИЙ ЗМІСТ ДИСЕРТАЦІЇ ВІДОБРАЖЕНИЙ У НАСТУПНИХ ПУБЛІКАЦІЯХ Вергун А.С. Предпосылки комплексной обработки чугуна и выбор эффективной технологии ее осуществления //Известия ВУЗов. Черная металлургия. – 1999.–№ 4. – С.3 –7. Вергун А.С. Комплексное рафинирование чугуна натрийсодержащим шлаком //Известия ВУЗов. Черная металлургия. – 1999.–№ 8.– С.5–9. Вергун А.С. Исследование поведения азота в чугуне в процессе выплавки и внедоменной десульфурации //Теория и практика металлургии. – 1998. – № 3. – С.17–20. Вергун А.С. Исследование и разработка оптимального химического состава магнийсодержащего реагента для внедоменной десульфурации чугуна // Теория и практика металлургии. – 2000. – № 3. – С.21–24. Десульфурация чугуна в 420–тонных передвижных миксерных ковшах /Воронова Н.А., Вергун А.С., Лафер И.М., Айзатулов Р.С., Некрасов А.П. //Бюллетень ЦНИИЧМ. – 1983. – № 8. – С. 46–47. Вергун А.С., Лафер И.М., Шевченко А.Ф. К вопросу о механизме десульфурации чугуна магнием //Сталь. – 1985. – № 3. – С.17–19. Вергун А.С. Механизм процесса десульфурации чугуна магнием //Металлургическая и горнорудная промышленность. – 2000. –№ 3. – С.5-7. Чернятевич А.Г., Вергун А.С., Чубин К.И. Особенности десульфурации чугуна при вдувании диспергированного магния //Известия ВУЗов. ЧМ. – 2000.– № 12.– С.3–8. Закономерности поведения азота в передельном чугуне в процессе выплавки и выпуска его в ковш /Вергун А.С., Шевченко А.Ф., Руденко Л.Н., Руденко А.Л.//Металлургическая и горнорудная промышленность. – 2002. – № 2.–С.8–10. Промышленное производство особочистого по сере доменного чугуна /Плискановский С.Т., Воронова Н.А., Шевченко А.Ф., Хрущев Е.И., Вергун А.С., Пефтиев И.М., Мальков А.Н., Герасимов В.А., Остапчук Н.П. //Металлург. – 1980. – № 4. – С.19–21. Исследование эффективности использования обесфосфоренного чугуна при кислородно–конвертерном переделе / Плевако В.С., Вергун А.С., Старов Р.В., Гулыга Д.В., Трунов Б.С., Шеенко М.И., Гнедаш А.В.//Металлург.–1988.–№9. –С.25–26. Организация отбора представительных проб и контроль качества особочистого по сере чугуна /Хрущев Е.И., Остапчук Н.П., Шевченко А.Ф., Вергун А.С. //Металлург. – 1982.–№ 11.– С. 15–16. Эффективность комплексной обработки чугуна /Зотов А.В., Гулыга Д.В., Вергун А.С., Шевченко А.Ф., Вяткин Ю.Ф., Руденко А.Л., Коваль В.А., Бельман Л.М. //Сталь. – 1993.– №7.– С.18–20. Руденко А.Л., Вергун А.С. Расчет равновесия в системе ”металл–шлак” в процессе внепечного рафинирования чугуна //Известия ВУЗов. ЧМ. – 1991.– №12.– С.36. Влияние типа и расхода реагента на теплопотери чугуна при внепечной обработке /Шевченко А..Ф., Зигало И.Н., Двоскин Б.В., Вергун А.С., Костицын Е.А.//Известия ВУЗов. ЧМ. – 1996.–№8. –С.4–7. Влияние параметров процесса десульфурации чугуна вторичным магнием на попутную деазотацию /Вергун А.С., Шевченко А.Ф., Двоскин Б.В., Зотов А.В., Курилова Л.П.//Сб труд. ИЧМ НАНУ.”Фундаментальные и прикладные проблемы черной металлургии”., вып. 4.–К.:Наукова думка, 2001.– С. 83–87. Сопоставление эффективности способов десульфурации чугуна /Шевченко А.Ф., Двоскин Б.В., Вергун А.С., Быков Л.В., Александров В.А., Баранник И.А.//Сталь.–2000.–№8.–С.14–17. Особенности гидрогазодинамических процессов при комплексной обработке чугуна в двухкамерном ковше /Чернятевич А.Г., Вергун А.С., Кравец А.Н., Селищев В.Н., Бабич Т.А.//Теория и практика металлургии.–2000. –№4.–С.17–22. Разработка технологии одновременного обескремнивания и десульфурации чугуна в заливочном ковше /Чернятевич А.Г., Вергун А.С., Кравец А.Н., Селищев В.Н.//Известия ВУЗов. Черная металлургия. – 2000.–№ 10.–С.14–18. Расчетный метод регулирования расхода магния при глубокой десульфурации чугуна /Воронова Н.А., Шевченко А.Ф., Вергун А.С., Мальков А.Н. //Сб. МЧМ СССР: Интенсификация процессов доменной плавки и освоение печей большого объема, – 1980. – №6.– С.85–91. Руденко А.Л., Вергун А.С., Шевченко А.Ф. Испарение Na-содержащих флюсов и шлаков при комплексной обработке железоуглеродистых расплавов //Сб. трудов ИЧМ НАНУ ”Фундаментальные и прикладные проблемы черной металлургии”. – К.: Наукова думка, – 1985.–С.92–100. Шеенко М.И., Вергун А.С., Курилова Т.П. Исследование возможности получения чистых по сере и фосфору чугунов для переработки в кислородном конвертере //Сб МЧМ СССР. Технология выплавки конвертерной и мартеновской стали. – М.: Металлургия, 1985. –С.63–67. Вергун А.С., Приходько Э.В., Шеенко М.И. Исследование процесса внепечной дефосфорации чугуна //Сб. трудов ИПЛАН УССР ”Внепечная обработка металлических расплавов”. – К.– 1986. – С.42–46. Вергун А.С., Харахулах В.С. Эффективность применения обессеренного чугуна при выплавке конвертерной стали // Сб. трудов ИЧМ МЧМ СССР ”Черная металлургия. Наука–технология–производство”. – М.: Металлургия, – 1989. – С. 131–136. Особенности процесса внепечной десульфурации жидкого железоуглеродистого полупродукта /Вергун А.С., Корченко В.П., Поляков В.Ф., Руденко А.Л., Мальков А.Н.//Труды Всесоюзн. научно–техн. конф. ”Непрерывные процессы ”Руда - лом - металлопрокат”. – Свердловск: ВНИИМТ, – 1989. – С.62–63. Способ обработки чугуна магнием: А.с. 1106154 А СССР, МКИ С21С 1/00 /Н.А.Воронова, А.Ф.Шевченко, М.Л.Лавреньев, А.С.Вергун, А.Г.Кияшко (СССР) – № 3521496/22–02; Заявл. 16.12.82. Способ десульфурации чугуна в ковше: А.с.1549079 А1 CCCР МКИ C21C 1/02 /А.Ф.Шевченко, А.С.Вергун, Э.В.Приходько, Я.Б.Карпиловский, Д.Г.Максимчук, Д.В.Гулыга, И.И.Есипенко (СССР).– № 446317/23–02; Заявл. 25.08.88. А.с. 1613416А1 СССР, МКИ И65 G6548 /Подопригора Г.Г., Черевик Ю.И., Тарнопольский Б.М., Мальков А.Н., Вергун А.С., Руденко А.Л., Кулагин Г.Г., Сулима В.Н., Свищев Г.С. – № 4640506; Заявл. 19.01.1989 г.; Опубл. 15.12.90, Бюл. № 46. Повышение степени использования магния при внедоменной десульфурации чугуна /Шевченко А.Ф., Вергун А.С., Рудницкий М.Л., Зигало И.Н. //Сталь. –1989.– № 11.– С. 44–45. Комплексная внедоменная десульфурация и деазотации чугуна /Вергун А.С., Двоскин Б.В., Шевченко А.Ф., Зотов А.В. // Труды V конгресса сталеплавильщиков. – М.: Черметинформация. – 1999. – С.138–141. Исследование и разработка основных положений и опытно–промышленное опробование технологии комплексной обработки чугуна реагентом на основе содосодержащих отходов /Вергун А.С., Вяткин Ю.Ф., Руденко А.Л., Зотов А.В., Мальков А.Н., Коваль В.А., Бельман Л.М., Шевченко А.Ф.// Труды І-го междун. конгресса сталеплавильщиков. – Москва: ЦНИИТЭИЧМ, – 1992.– С. 193–195. Руденко А.Л., Вергун А.С. Повышение рафинирующей способности содосодержащих флюсов для комплексной обработки чугуна //Труды ІІ-го международного конгресса сталеплавильщиков, октябрь, 1993 г. – Липецк: Изд. АО Черметинформация. – 1994. – С.203-204. Внедоменная десульфурация чугуна гранулированным магниевым сплавом МА9Ц6 /Вергун А.С., Рудницкий М.Л., Шевченко А.Ф., Гулыга Д.В., Баранник И.А. //Сб. ”Магниевые сплавы для современной техники”. – М.: Наука, 1992. – С. 175–177. Реагент для комплексной десульфурации, дефосфорации и деазотации чугуна /Вергун А.С., Шевченко А.Ф., Зотов А.В., Говорун П.П., Горобченко А.Н., Овчарук А.Н., Руденко А.Л., Курилова Л.П. //Труды IV конгресса сталеплавильщиков. – М.: Черметинформация. – 1997. – С.235–237. Рациональные условия усвоения и взаимодействия магния с расплавом при внепечной обработке жидкого чугуна /Шевченко А.Ф., Приходько Э.В., Двоскин Б.В., Вергун А.С. //Труды V междунар. симпозиума по десульфурации чугуна и стали. – Пидинг /Бад Рейхенхал (Германия). –15–17 окт. – 1998.–С.13.1–13.8. Высокотемпературные исследования процессов в различных реакционных зонах при комплексной продувке чугуна /Чернятевич А.Г., Вергун А.С., Кравец А.Н., Бабич Т.А., Чубин К.И. //Труды междунар. научн.–техн– конференции ”Теория и практика кислородно–конвертерных процессов” – Днепропетровск: ГМетАУ.–1998.–С.21–22. Роль растворяющегося в чугуне магния в процессе десульфурации чугуна /Вергун А.С., Чернятевич А.Г., Шевченко А.Ф., Чубин К.И., Кравец А.Н.//Труды научн.–техн. конференции по теории и практике сталеплав. производства, посвященной 100–летию со дня рождения проф. Казанцева И.Г. – Мариуполь: ПГТУ.– 1999. – С.17. Внедоменная десульфурация чугуна магний -алюминиевым сплавом /Вергун А.С., Шевченко А.Ф., Двоскин Б.В., Быков Л.В., Зотов А.В. //Тезисы докладов научн.–техн. конференции по теории и практике сталеплавильного производства.– Мариуполь: ПГТУ. – 1999.– С.16. Optimization of composition of magnesium containing reagent for ladle treatment of liquid pig-iron /Shevchenko A., Vergun A., Dvoskin B., Bukov L., Zotov A. //The IMA 1999. The global voice for magnesium, Hilton, Praga (Cheska) Octobre/ - 1999.– р. 163–169. Новые разработки в области механизма десульфурации чугуна при вдувании диспергированного магния /Чернятевич А.Г., Вергун А.С., Чубин К.И., Сигарев Е.Н. // Труды междунаррод. научн.–техн. конференции ”Производство стали в ХХІ веке. Прогноз, процессы, технология, экология (Киев–Днепропетровск. 15–19 мая 2000 г.). – Днепропетровск.–2000.–С. 504–509. Модель процесса десульфурации чугуна инжектированием диспергированного магния в струе газа–носителя через фурму погружения с испарителем на выходе /Вергун А.С., Шевченко А.Ф., Чернятевич А.Г., Чубин К.И., Сигарев Е.Н. // Тепло– и массообменные процессы в металлургических системах: материалы VI Международн. научн.-техн. конференции (Мариуполь, 7–9 сентября 2000 г.), –Мариуполь: ПГТУ – 2000.– С.205–209. Променение технологии десульфурации чугуна чистым гранулированным магнием на Уханьском металлургическом комбинате /Шевченко А.Ф., Двоскин Б.В., Вергун А.С., Александров В.А., Башмаков А.М, Троценко Э.А., Лю Дунь Ие, Цзи Цзя Бинь, Чжао Динь Юй, Джоан Хан Линь //Сталь.–2002.–№4.–С.46–48. Выбор рационального решения ковшевого рафинирования чугуна магниевыми реагентами /Шевченко А.Ф., Александров В.А., Зотов А.В., Курилова Л.П., Двоскин Б.В, Вергун А.С. //Сталь.–2002.–№6.–С.16–19. Рациональная технология десульфурации чугуна гранулированным магнием в большегрузных заливочных ковшах /Шевченко А.Ф., Двоскин Б.В., Вергун А.С., Носоченко О.В., Александров В.А. //Бюл. Ин–та ”Черметинформация”.–2001.–№1.–С.12–14. Особенности массопереноса при внепечном рафинировании чугуна /Сигарев Е.Н., Чернятевич А.Г., Чубин К.И., Вергун А.С., Могилевцев О.А. //Специальная металлургия вчера, сегодня, завтра: Материалы Международной научно–технической конференции (Киев, 8–9 октября 2002 г.), –Киев: Політехніка.–2002.–С.312–316. Improvements in process and equipment for hot metal desulphurization consisting in application of magnesium–lime mixture at Wuhan Iron and Steel Works/A. F. Shevchenko, B. V. Dvoskin, A. S. Vergun., V. A. Alexandrov, A. M. Bashmakov., V. I.Chumarni, E. A. Trotsenko, Lui Dong Ye, Ji Jia Bin, Zhao Ji Yu, Zhuang Han Ning, Cheng He Xi// The VII International Symposium for desulphurization of hot metal and steel, Anif, Austria, 26–27 september/.2002.–p.25–28.
|