Анотація до роботи:
Бак С.М. Рівняння нескінченних ланцюгів нелінійних осциляторів: задача Коші, періодичні розв’язки, біжучі хвилі. – Рукопис. Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.01.02 – диференціальні рівняння. – Вінницький державний педагогічний університет імені Михайла Коцюбинського, Вінниця, 2007. Робота присвячена дослідженню нескінченних систем диференціальних рівнянь, які описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Такі системи представляють собою нескінченновимірні гамільтонові системи в гільбертовому просторі . Перш за все в роботі отримано результати про існування та єдиність глобальних розв’язків задачі Коші, а також результати про неіснування глобальних розв’язків. Далі вивчаються періодичні за часом розв’язки. Такі розв’язки описуються нелінійними різницевими рівняннями, які мають варіаційну структуру. За допомогою теореми про гірський перевал встановлено достатні умови існування періодичних розв’язків. У випадку степеневих потенціалів показано, що такі розв’язки можуть бути отримані за допомогою методу умовної мінімізації. У випадку просторово однорідних ланцюгів встановлено існування розв’язків, що мають вигляд біжучих хвиль. Показано, що профіль таких хвиль експоненціально спадає на нескінченності. |