Ольховик Лариса Павлівна. Еволюція магнітних властивостей високоанізотропного феримагнетика BaFe12O19 при переході від макро- до нанокристала : Дис... д-ра наук: 01.04.11 - 2006.
Анотація до роботи:
Ольховик Л.П. Еволюція магнітних властивостей високоанізотропного феримагнетика BaFe12O19 при переході від макро- до нанокристала. - Рукопис.
Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 01.04.11 – магнетизм. Харківський національний університет ім. В.Н.Каразіна, Харків, 2006.
Дисертаційна робота присвячена розв’язанню проблеми встановлення універсальних механізмів, що формують у широких інтервалах температури та магнітного поля магнітні властивості високоанізотропного гексагонального фериту барію при зменшенні об’єкта дослідження до нанометрового розміру.
Дослідження проведені на модельних системах малих (нано-) та великих (мікро-) SW частинок, одержаних за допомогою розроблених методів, що включають елементи кріохімічної та радіаційно-термічної технологій. Розкрито проблематику малих частинок та обґрунтовано застосований комплексний підхід до її вивчення, який включає вибір як об’єктів, так і методик (електронна мікроскопія, рентгенівська фотоелектронна та селективна за глибиною конверсійна месбауерівська спектроскопія, вимірювання магнітних характеристик у поєднанні з комп’ютерним моделюванням фізичних процесів). Це дозволило одержати принципово нові відомості про гранично малу для високоанізотропного кристала товщину приповерхневої області зі збуреною магнітною структурою (3-5 нм при 300 К), про параметри поверхневої магнітної анізотропії – поле та константу, про магнітний стан системи нанокристалів. Результатом цих досліджень є узагальнена (Н–Т) діаграма, яка відображає усі специфічні для частинок з критично малим об’ємом ефекти – поверхневий, розмірний та колективний, зумовлений міжчастинковою магнітною взаємодією.
У дисертаційній роботі вирішено поставлену проблему щодо встановлення механізмів, які визначають специфіку зміни магнітних властивостей високоанізотропного гексагонального фериту барію при переході від макро- до нанокристала.
1. Розроблено нові фізико-технологічні основи одержання високодисперсних феритових порошків, які включають елементи кріохімічної та радіаційно-термічної технологій. Отримано високодисперсні системи BaFe12O19: нанокристалів з розподілом за діаметром 10 – 100 нм, мікрокристалів – від 0.1 до 1 мкм та товщиною 2 – 10 та 50 – 200 параметрів кристалічної решітки, відповідно.
2. Розроблено та захищено патентами і авторськими свідоцтвами способи отримання та хімічний склад феритових матеріалів, призначених для створення систем з високою однорідністю підмагнічуючого поля, а також нових типів носіїв високощільного магнітного запису.
3. Вперше обґрунтовано основні умови відповідності високодисперсних систем однодоменних частинок різної масштабності критерію модельності об’єкта дослідження, серед яких головною виділено відповідність (згідно з розподілом частинок за об’ємами) нанокристалічної системи класифікації малих, а мікрокристалічної – великих SW частинок.
Експериментально підтверджено, що поведінка досліджуваної системи нанокристалів BaFe12O19 у зовнішньому магнітному полі відповідає SW теорії, одним з основних положень якої є когерентні процеси намагнічування. Для системи однодоменних мікрокристалів виявлено непередбачену теоретичними моделями аномалію кривої намагнічування у області малих полів, яка пов’язується з некогерентними процесами намагнічування внаслідок неоднорідної магнітної структури в об’ємі мікрокристала.
4. Вперше експериментальним шляхом підтверджено існування у високоанізотропних кристалах «перехідної» приповерхневої області, магнітна структура якої відрізняється від структури об’ємної частини кристала. З використанням методу селективної за глибиною конверсійної месбауерівської спектроскопії визначено параметри приповерхневої області у базисній площині (001) кристалів базових і заміщених складів гексафериту типу М. Для монокристала BaFe12O19 при 300К значення товщини цієї області складає 3 – 5 нм; середній кут “скосу” магнітних моментів відносно кристалографічної осі с дорівнює . Збільшення товщини приповерхневої області приблизно на дві позиції зафіксовано лише при К, тобто за ~100К до температури Кюрі. Ґрунтуючись на даних про температурні залежності локальних магнітних полів на ядрах 57Fe уперше визначено температури переходу до парамагнітного стану відкритої поверхні та приповерхневої області в цілому, значення яких на 50 – 75 К і, відповідно, на 5 К нижчі за температуру Кюрі об’ємної частини кристала.
5. Вперше встановлено роль поверхні нанокристалічних частинок гексагонального фериту барію у формуванні їх магнітних властивостей. Одержано температурну залежність поля та константи «поверхневої» анізотропії. Остання за порядком величини домірна з константою магнітокристалічної анізотропії фериту барію . Зміна знаку при ~570К безпосередньо свідчить про якісну зміну внеску «поверхневої» анізотропії в ефективну анізотропію нанокристала. На підставі комп’ютерного моделювання для знайденого в експерименті співвідношення встановлено додатковий до SW механізм, який визначає характер основної кривої намагнічування системи однодоменних частинок.
6. Вперше результати дослідження магнітного стану нанокристалів подані у вигляді узагальненої (Н–Т) діаграми, яка відображає усю специфіку малих частинок та їх ансамблю. Для системи нанокристалів BaFe12O19, які мають об’єм, близький до критичного, поряд з областями магнітостабільного (МС) та парамагнітного (ПМ) станів, існують області, в яких реалізуються не характерні для макроскопічного аналога стани, а саме, досить протяжна за температурою () та полем (кЕ) область суперпарамагнітного (СПМ) стану і високотемпературні області змішаних магнітних станів індивідуальних частинок та системи в цілому – (МС + СПМ + ПМ) та (СПМ + ПМ). Показано подвійну роль зовнішнього магнітного поля, залежно від його величини, у формуванні суперпарамагнітного стану: стимулююча (кЕ) та блокуюча (кЕ) процес переходу частинок до СПМ стану.
7. Встановлено, що міжчастинкова магнітна взаємодія у щільноупакованій системі нанокристалів високоанізотропного гексафериту є значущою і класифікується за величиною як середня. Вперше дані про польову залежність параметра результуючої магнітної взаємодії , який змінюється з ростом температури за величиною та знаком, сформовано у вигляді () діаграми. Шляхом її співставлення з діаграмою магнітного стану виявлено відгук колективного ефекту, зумовленого міжчастинковою взаємодією, на будь-яку зміну магнітного стану системи, індивідуальних частинок і навіть їх відкритої поверхні.
Публікації автора:
Optimization principles for preparation methods and properties of fine ferrite materials/ N.M.Borisova, Z.V.Golubenko, T.G.Kuz’micheva, L.P.Ol’khovik, V.P.Shabatin // J.Magn.Magn.Mater.- 1992.- V.114.- P.317-328.
Камзин А.С., Кузьмичева Т.Г., Ольховик Л.П. Эффект дисперсности и катионное распределение в ферритовых порошках, полученных нетрадиционными способами // Письма в ЖТФ.- 1994.- Т.20, вып.9.- С.83-88.
Kuz’micheva T.G., Ol’khovik L.P., Shabatin V.P. Synthesis and properties of fine Ba-ferrite powders // IEEE Trans.Magn.- 1995.- V.31, № 1.- P.800-803.
Камзин А.С., Ольховик Л.П., Розенбаум В.Л. Исследование магнитной структуры поверхности и объема гексаферритов Ва // Письма в ЖЭТФ.- 1995.-Т.61, вып.11.- С.916-919.
Radiothermal synthesis of fine Ba-ferrite powders and their properties/ L.P.Ol’khovik, N.M.Borisova, A.S.Kamzin, O.G.Fisenko // J.Magn.Magn.Mater.- 1996.- V.154.- P.365-368.
Магнитное состояние систем разной дисперсности гексагонального феррита бария в малых полях / Л.П.Ольховик, Т.Г.Кузьмичева, Ю.А.Мамалуй, А.С.Камзин // ФТТ.- 1996.- Т.38, № 11.- С.3420-3426.
Исследование процесса образования микрокристаллических порошков феррита бария с криохимической предысторией / Л.П.Ольховик, Н.М.Борисова, Т.Г.Кузьмичева, В.П.Шабатин // Функциональные материалы.- 1996.- Т.3, № 1.- С.84-87.
Исследование магнитной структуры поверхности и объема ферритов Pb-M методом одновременной гамма-, рентгеновской и электронной мессбауэровской спектроскопии / А.С.Камзин, Л.П.Ольховик, В.Л.Розенбаум, Г.Клингельхофер, Б.Штал, Р.Геллерт // ФТТ.- 1996.- Т.38, № 9.- С.2823-2830.
Diagnostics of the surface and near-surface region of barium hexaferrite monocrystals / A.S.Kamzin, V.L.Rozenbaum, L.P.Ol’khovik, E.D.Kovtun // J.Magn.Magn.Mater.- 1996.- Vol.161.- C.139-142.
Камзин А.С., Ольховик Л.П., Розенбаум В.Л. Одновременная гамма-, рентгеновская и электронная мессбауэровская спектроскопия магнитной структуры поверхности и объема гексагональных ферритов типа М // ЖЭТФ.- 1997.- Т.111, №4.- С.1426-1437.
Камзин А.С., Розенбаум В.Л., Ольховик Л.П. Исследование магнитной структуры поверхности и объема кристаллов алюминий-замещенных гексаферритов типа Sr-M // Письма в ЖЭТФ.- 1998.- Т.67, № 10.- С.798-802.
Исследование магнитного состояния высокодисперсной системы ВаО6Fe2O3 с размером частиц, близким к критическому / З.В.Голубенко, А.С.Камзин, Л.П.Ольховик, З.И.Сизова // ФТТ.- 1998.- Т.40, № 7.- С.1294-1297.
Голубенко З.В., Ольховик Л.П., Сизова З.И. Особенности поведения намагниченности нанодисперсной системы кристаллов высокоанизотропного гексаферрита ВаО6Fe2O3 // Вісник ХДУ. Сер. “Фізика”.- 1998.- № 417, вип.1.- С.54-57.
Многослойные микрокристаллы для записывающей и подмагничивающей сред / Н.М.Борисова, Т.Г.Кузьмичева, Л.П.Ольховик, В.П.Шабатин // Вісник ХДУ. Сер. “Фізика”.- 1998.- № 418, вип.2.- С.89-92.
Ольховик Л.П. Влияние поверхности кристаллов на магнитные свойства высокодисперсных систем гексагонального ферримагнетика BaO6Fe2O3 // Вісник ХДУ. Сер. “Фізика”.- 1998.- № 417, вип.1.- С.58-62.
Investigation of the critical (H-T)- parameters for the state of the BaO6Fe2O3 nanocrystal system / L.P.Ol’khovik, Z.I.Sizova, Z.V.Golubenko, T.G.Kuz’micheva // J.Magn.Magn.Mater.- 1998.- Vol.183.- P.181-184.
Камзин А.С., Ольховик Л.П., Розенбаум В.Л. Мессбауэровские исследования магнитной структуры поверхности и объема скандий-замещенных гексаферритов типа Ва-М // ФТТ.- 1999.- Т.41, № 3.- С.483-490.
Ol’khovik L.P. Role of the size, temperature and field factors in the magnetic state formation of the ВаО6Fe2O3 fine system // Phys.Stat.Sol.(a).- 1999.- Vol.172.- P.201-208.
Камзин А.С., Ольховик Л.П., Сизова З.И. Специфика магнитной структуры малых частиц // Вісник ХДУ. Сер. “Фізика”.- 1999.- № 440, вип.3.-С.115-118.
Селективная по глубине конверсионная электронная мессбауэровская спектроскопия поверхности монокристаллов гексаферритов типа ВаМ / А.Камзин, Б.Штал, Р.Геллерт, Г.Клингельхофер, Э.Канкелайт, Л.Ольховик, Д.Вчерашний // ФТТ.- 2000.- Т.42, вып. 5.- С.873-878.
Спиновая переориентация в системе нанокристаллов ВаFe12O19 / З.В.Голубенко, С.Н.Зиненко, А.А.Мураховский, Л.П.Ольховик, Ю.А.Попков, З.И.Сизова // Вісник ХНУ . Сер. “Фізика”.- 2000.- № 476, вип. 4.- С.72-75.
О системе нанокристаллов феррита бария как о модельном объекте /З.В.Голубенко, Т.Г.Кузьмичева, Л.П.Ольховик, З.И.Сизова // Вісник ХНУ. Сер. “Фізика”.- 2001.- № 516, вип.5.- С.77-80.
Магнитное состояние нано- и микромасштабных объектов вблизи температуры Кюри высокоанизотропного ферримагнитного кристалла / А.С.Камзин, Л.П.Ольховик, З.И.Сизова , Е.В.Шуринова // Вісник ХНУ. Сер. “Фізика”.- 2002.- № 558, вип.6.- С.71-74.
Влияние межчастичного взаимодействия на особенности кривых намагничивания ансамблей нано- и микрокристаллов / Л.П.Ольховик, М.М.Хворов, Н.М.Борисова, З.В.Голубенко, З.И.Сизова, Е.В.Шуринова // ФТТ.- 2003.- Т.45, вып.4.- С.643-648.
Создание модельной системы нанокристаллов высокоанизотропного феррита / Н.М.Борисова, Л.П.Ольховик, Е.В.Шуринова, Т.Г.Кузьмичева // Вісник ХНУ. Сер. “Фізика”.- 2003.- № 600, вип.7.- С.55-60.
Ольховик Л.П., Сизова З.И., Камзин А.С. Магнитное состояние системы нанокристаллов гексаферрита бария при подходе к температуре Кюри // ФТТ.- 2003.- Т.45, вып. 11.- С.2033-2036.
Определение вклада поверхностной анизотропии в поле магнитной анизотропии нанокристаллического порошка феррита бария при различных температурах / Л.П.Ольховик, З.И.Сизова, Е.В.Шуринова, А.С.Камзин // ФТТ.-2005.- Т.47, вып.7.- С.1261-1264.
Мамалуй Ю.А., Ольховик Л.П. Гексагональный феррит: от макро к нанокристаллу // ФНТ.- 2005.- Т.31, № 3/4.- С.356-366.
Переориентация спинов в нанокристаллах BaFe12O19 и коллективные эффекты / Л.П.Ольховик, З.И.Сизова, Е.В.Шуринова, А.С.Камзин // Изв. РАН, сер. физическая.- 2005.- Т.69, № 10.- С.1540-1542.
Ферритовый материал: А.с. 1096703 СССР, МКИ Н 01 F 1/10, C 04 B 35/26 / Ю.А.Мамалуй, Л.П.Ольховик (СССР)- № 3487794; Заявл. 7.09.82. Зарегистр. 8.02.84. Бюл. № 21.
Ферритовый материал: А.с. 1152046 СССР, МКИ H 01 F 1/10, C 04 B 35/26 / Ю.А.Мамалуй, Л.П.Ольховик (СССР).- № 3675284; Заявл. 19.12.83; Зарегистр. 22.12.84.
Ферритовый материал: А.с. 1251730 СССР, МКИ Н 01 F 1/10, С 04 B 35/26 / Н.Т.Малафаев, Ю.А.Мамалуй, А.А.Мураховский, Л.П.Ольховик (СССР).- № 3832615; Заявл. 29.12.84; Зарегистр. 15.04.86.
Ферритовый материал для магнитной записи: А.С. 1487728 СССР, МКИ H 01 F 1/10, B 22 F 1/00, G 11 B 5/68 / Л.П.Ольховик, Ю.А.Попков, З.В.Голубенко, Л.Ю.Иванова (СССР).- № 4268375; Заявл. 1.04.87; Зарегистр. 15.02.89.
Ферритовый материал: А.с. 1499582 СССР, МКИ НО1, А 1/10, С 04В 35/26 / Л.П.Ольховик, З.В.Голубенко, Т.Г.Кузьмичева, Ю.А.Мамалуй (СССР).- № 4268362; Заявл. 26.06.87; Зарегистр. 08.04.89.
Ферритовый материал: А.с. 1596399 СССР, МКИ H 01 F 1/10, C 04 B 35/26 / Л.П.Ольховик, З.В.Голубенко, Ю.А.Попков (СССР).- № 4473940; Заявлено 15.08.88; Зарегистр. 1.06.90.
Способ получения порошка гексагонального феррита бария: А.с. 1724584 СССР, МКИ С 01 G 49/00 / Т.Г.Кузьмичева, Л.П.Ольховик(Украина), В.П.Шабатин (Россия).- № 4843538; Заявл. 28.06.90; Зарегистр. 8.12.91. Пат. 1724584 Украина. Зарегистр. 29.06.93. Бюл. № 13.
Способ получения порошка феррита бария пластинчатой формы: А.с. 1438921 СССР, МКИ В 22 F 1/00 / И.И.Борисов (Россия), Н.М.Борисова, Л.П.Ольховик (Украина), М.И.Руденко, С.С.Церевитинов (Россия).- № 4932383; Заявл. 1987.- Пат.2022716 Украина. МКИ. В 22 F 9/16, H 01 F 1/11.- № 4932383; Зарегистр. 15.11.94. Бюл. № 21.
Способ получения высокодисперсного порошка феррита бария пластинчатой формы: А.с. 1832603 СССР, МКИ В22 F1/00 /Л.П.Ольховик, В.П.Винтоняк, З.В.Голубенко. -№4740093; Заявл. 19.09.89; Зарегистр. 13.10.92.
Способ изготовления порошка феррита бария пластинчатой формы: Заявка № 4942383 МКИ В 22 F 9/16, H 01 F 1/11 / Н.М.Борисова (Украина), А.В.Дьяков, А.С.Камзин (Россия), Л.П.Ольховик (Украина), О.Г.Фисенко (Россия). - Заявл. 22.03.94; Решение о выдаче патента от 5.01.96.
Борисова Н.М., Голубенко З.В., Кузьмичева Т.Г., Ольховик Л.П. Композиционные материалы для постоянных магнитов и ВМЗ // XIX Всес. конф. по физике магнитных явлений. Тез.докл.- Ташкент.- 1991.- Т.3.- С.179-180.
Ol’khovik L.P., Borisova N.M., Kuz’micheva T.G., Shabatin V.P., Kamzin A.S. Notraditional preparation methods and properties of hexagonal ferrite powders for high density magnetic recording // 7th International Conf. on ferrite. ICF- 96.- Bordeaux (France).- 1996.- P.23.
Камзин А.С., Ольховик Л.П., Попков Ю.А. Проявление размерных и поверхностных эффектов в системе нанокристаллов высокоанизотропных ферримагнетиков // Второй российско-украинский семинар “Нанофизика и наноэлектроника” Тез. докл.- Киев, Украина.- 2000.-С.82-83.
Ольховик Л.П., Борисова Н.М., Сизова З.И., Шуринова Е.В. Магнитное межчастичное взаимодействие в ансамблях нано- и микрокристаллов ВаFe12O19 // XYIII школа-семинар “Новые магнитные материалы микроэлектроники ” (НМММ-2002). Тез. докл.- Москва, Россия.- 2002.- С.319-320.
Zinenko S.N., Murakhovski A.A., Ol’khovik L.P., Kamzin A.S. Spinreorientation phase transition caused by the surface in the ВаFe12O19 nanocrystals // International Conf. on the Applications of the Mssbauer Effect. Abstract.- Sultanate of Oman-Muscat.- 2003.- P. T2/12.
Ольховик Л.П., Шуринова Е.В. Диаграмма магнитного состояния системы нанокристаллов ВаFe12O19 в контексте межчастичного взаимодействия // XIX междунар. конф. школы-семинара “Новые магнитные материалы микроэлектроники” (НМММ-19). Тез. докл.-Москва.-2004. - С. 474-475.
Kamzin A.S., Ol’khovik L.P. Surface effects in M-Hexaferrite nanoparticles // Moscow International Symposium on magnetism.- MISM.- 2005.-Р.252.
Ol’khovik L.P., Dubinko S.V., Sizova Z.I., Shurinova E.V. Investigation of correlations of magnetic state of nanocrystals and their surface with interparticle interaction // International Conf. “Functional Materials” ICFM’ 2005, Crimea, Ukraine.-2005.-Р.274.