Завдяки попередній нормалізації незбуреної функції Гамільтона в околі сім’ї вироджених коізотропних інваріантних торів відповідної гамільтонової системи, встановлено нові достатні умови, що гарантують існування близьких до вироджених ергодичних коізотропних інваріантних торів збуреної системи. Шляхом розповсюдження на вироджений коізотропний випадок техніки Пошеля та методу штучних параметрів у модифікації Севрюка-Ермана доведено, що множина торів збуреної системи утворює гладку в сенсі Вітні сім’ю, і її можна описати за допомогою системи нерівностей, які виникають у теорії діофантових наближень на гладких підмноговидах евклідового простору. На основі описаного у підрозділі 2.1 підходу побудовано гладку в сенсі Вітні сім’ю близьких до вироджених ергодичних коізотропних інваріантних торів, яка виникає поблизу многовиду квазістаціонарних точок еліптичного типу внаслідок збурення як гамільтоніана, так і симплектичної структури цілком інтегровної в сенсі Ліувілля системи. Показано, що відносна міра таких торів у фазовому просторі прямує до одиниці, коли величина збурення прямує до нуля. Доведено, що при порушенні маловимірних торичних непуассонових симетрій інтегровної гамільтонової системи в околі многовиду еліптичних інваріантних торів усередненої системи першого наближення виникає гладка в сенсі Вітні сім’я коізотропних інваріантних торів системи зі збуреним гамільтоніаном. Показано, що ці тори мають майже вироджений тип; оцінено відносну міру Лебега утвореної ними множини. Показано, що при виконанні певних умов нерезонансності в малому околі еліптичної квазістаціонарної точки неавтономної гамільтонової системи з швидко осцилюючим квазіперіодичним гамільтоніаном існує канторова множина, в точках якої починаються квазіперіодичні розв’язки цієї системи. Відносна міра Лебега зазначеної канторової множини прямує до одиниці, коли частоти гамільтоніана прямують до нескінченності. Цей факт дозволяє вважати еліптичну квазістаціонарну точку стійкою в метричному сенсі. З одержаних результатів випливає, що умови невиродженості в теоремі В.І. Арнольда, яка стосується дослідження околу еліптичного положення рівноваги гамільтонової системи, можна замінити більш слабкими умовами нерезонансності, що мають вигляд деяких діофантових нерівностей. В задачі про рух твердого тіла навколо точки закріплення, яка здійснює швидкі квазіперіодичні коливання малої амплітуди вздовж невертикальної осі, знайдено явний вигляд потенціалу вібраційних сил і виділено біфуркаційний параметр, від якого він залежить. Показано, що проходження цим параметром певного біфуркаційного значення супроводжується виникненням додаткового локального мінімуму потенціалу усередненої за часом системи. Такому мінімуму відповідає еліптичне положення рівноваги усередненої системи – квазістаціонарна точка. В околі останньої існує канторова множина точок, які породжують малі квазіперіодичні коливання досліджуваної механічної системи. Одержаний результат обгрунтовує з позицій КАМ-теорії ефекти вібраційної стабілізації, аналогічні тим, що спостерігаються в системах типу маятника Боголюбова-Капіци. Основні результати дисертації опубліковані в працях: 1. Кубічка А.А., Парасюк І.О. Диференційовна за Вітні сім’я коізотропних інваріантних торів гамільтонової системи, близької до виродженої // Вісн. Київ. ун-ту. Сер. Математика. Механіка. – 2000. – вип. 4. – С. 20-29. 2. Кубічка А.А., Парасюк І.О. Біфуркація гладкої в сенсі Вітні сім’ї коізотропних інваріантних торів гамільтонової системи при малій деформації симплектичної структури // Укр. мат. журн. – 2001. – 53, №5. – С.610-624. 3. Кубічка А.А. Біфуркація коізотропних інваріантних торів при порушенні абелевої симетрії гамільтонових систем // Вісн. Київ. ун-ту. Сер. Фізико-математичні науки. – 2001. – вип. 1. – С. 134-142. 4. Кубічка А.А. Неавтономна гамільтонова система в околі квазістаціонарної точки еліптичного типу // Вісн. Київ. ун-ту. Сер. Фізико-математичні науки. – 2002. – вип. 2. – С. 116-122. 5. Парасюк І.О., Кубічка А.А. Квазіперіодичні рухи гамільтонових систем з параметрами у випадку, близькому до виродженого // VII Міжнар. наук. конф. ім. акад. М.Кравчука (14-16 травня 1998 р., Київ): Матер. конф.– Київ, 1998. – С.382-381. 6. Кубічка А.А., Парасюк І.О. Диференційовна за Вітні сім’я коізотропних інваріантних торів гамільтонової системи, близької до виродженої // VIII Міжнар. наук. конф. ім. акад. М.Кравчука (11-14 травня 2000 р., Київ): Матеріали конф. – Київ, 2000. – С.305. 7. Kubichka A.A., Parasyuk I.O. Existence of Whitney-smooth family of coisotropic invariant tori for Hamiltonian system with perturbed symplectic structure // Міжнар. наук. конф. “Диференціальні та інтегральні рівняння” (12-14 вересня 2000 р., Одеса): Тези доп. – Одеса: Астопринт, 2000. – С.343-344. 8. Parasyuk I.O., Kubichka A.A. Whitney differentiable family of coisotropic invariant tori of close-to-degenerate Hamiltonian system // Материалы II междунар. науч. конф. “Проблемы дифференциальных уравнений, анализа и алгебры” (Актобе, 15-19 сентября 1999г). – Актобе – 2000. – С.82-85. 9. Кубічка А.А., Парасюк І.О. Неавтономна гамільтонова система в околі квазістаціонарної точки еліптичного типу // Теорія еволюційних рівнянь. Міжнар. конф. П’яті Боголюбівські читання (Кам’янець-Подільський, 22-24 травня 2002 р.): Тези доповідей. – Кам’янець-Подільський: Абетка-НОВА, 2002. 10. Кубічка А.А., Парасюк І.О., Процак Л.В. Дослідження стійкості квазістаціонарних станів твердого тіла з вібруючою точкою підвісу // Тези Міжнар. конф. “Асимтотичні методи в теорії диференціальних рівнянь” (16 грудня 2002 р., Київ): – К.:НПУ імені М.П.Драгоманова, 2002. – С.56. |